Finitely additive measures on groups and rings
نویسندگان
چکیده
On arbitrary topological groups a natural finitely additive measure can be defined via compactifications. It is closely related to Hartman’s concept of uniform distribution on non-compact groups (cf. [Ha]). Applications to several situations are possible. Some results of M. Paštéka and other authors on uniform distribution with respect to translation invariant finitely additive probability measures on Dedekind domains are transfered to more general situations. Furthermore it is shown that the range of a polynomial of degree ≥ 2 on a ring of algebraic integers has measure 0.
منابع مشابه
On co-Noetherian dimension of rings
We define and studyco-Noetherian dimension of rings for which the injective envelopeof simple modules have finite Krull-dimension. This is a Moritainvariant dimension that measures how far the ring is from beingco-Noetherian. The co-Noetherian dimension of certain rings,including commutative rings, are determined. It is shown that the class ${mathcal W}_n$ of rings with co-Noetherian dimension...
متن کاملFinitely Generated Annihilating-Ideal Graph of Commutative Rings
Let $R$ be a commutative ring and $mathbb{A}(R)$ be the set of all ideals with non-zero annihilators. Assume that $mathbb{A}^*(R)=mathbb{A}(R)diagdown {0}$ and $mathbb{F}(R)$ denote the set of all finitely generated ideals of $R$. In this paper, we introduce and investigate the {it finitely generated subgraph} of the annihilating-ideal graph of $R$, denoted by $mathbb{AG}_F(R)$. It is the (undi...
متن کاملUniversal Gradings of Orders
An order is a commutative ring of which the additive group is a finitely generated free abelian group, and a graded order is an order that is provided with a grading by some abelian group. Examples are provided by group rings of finite abelian groups over rings of integers in number fields. We generalize known properties of nilpotents, idempotents, and roots of unity in such group rings to the ...
متن کاملA Note on Invariant Finitely Additive Measures
We show that under certain general conditions any finitely additive measure which is defined for all subsets of a set X and is invariant under the action of a group G acting on X is concentrated on a G-invariant subset Y on which the G-action factors to that of an amenable group. The result is then applied to prove a conjecture of S. Wagon about finitely additive measures on spheres. It is well...
متن کاملZero Square Rings
A ring R for which x = 0 for all x e R is called a zerosquare ring. Zero-square rings are easily seen to be locally nilpotent. This leads to two problems: (1) constructing finitely generated zero-square rings with large index of nilpotence, and (2) investigating the structure of finitely generated zerosquare rings with given index of nilpotence. For the first problem we construct a class of zer...
متن کامل